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1 Causal Networks

Unwanted email (commonly called spam) is now a major problem. Many people use spam filters to auto-
matically discard email that looks like spam. Some of these filters use a probabilistic model to determine
how likely a piece of email is to be spam, and then discard it if the probability of it being spam is sufficiently
high (e.g. greater than 0.9, or whatever level the user thinks is appropriate). Here, we will consider a simple
probabilistic model for email that incorporates some of the common characteristics of spam. A real spam
filter would need a much more complex model, but the basic characteristics are essentially the same. Your
task will be to write an R program to categorize emails as being either spam or ham (i.e. not-spam) by
examining certain characteristics of each message.

The model we will use is based on a causal network (also called a belief network) which shows how each
random variable depends on its parent random variable(s). Here is an example:

Figure 1: Weather Causal Network

The top node represents the Cloudy random variable, which is given the binary value 0 or 1 based on whether
it was cloudy yesterday (0 for false and 1 for true). The two nodes below this (Rain and Sprinklers) are also
binary random variables indicating whether it rained yesterday and if the sprinklers went off, respectively.
The bottom row contains the binary random variable GrassWet indicating whether the grass is wet this



morning. You can see that GrassWet clearly depends on the values of Rain and Sprinklers, while each
of these variables in turn depends on the value of Cloudy.!

Assume that we are living in the present, so the value of GrassWet is the only thing we can observe as
we walk outside in the morning. A complete probabilistic model would need to specify the joint probability
mass function for all possible combinations of values for these four random variables.? In this case, there are
24 = 16 such possible combinations, but you can imagine in the case of a slightly larger causal network that
the number of combinations increases exponentially, so we would rather not specify the probability of each
combination of values separately. Instead, we use the fact that we can always write the joint probability for
a set of random variables (e.g. W, XY, Z) as the following product, once we have chosen some order for
them:

PW=w,X=2Y=y Z=2z2)
S P(Z =W =w, X =5,Y =) P(Y = y|W = w, X =) - P(X = 2|W = w) - P(W = w)

If we can furthermore simplify some of the factors above, we may be able to specify the model using many
fewer numbers.

When the model is specified using a causal network, we order the variables so that the arrows go forward
(top to bottom in this case) and then use conditional probabilities that are conditional only on the parents
of a variable (node). A variable X is a parent of variable Y if there is an arrow from X to Y. For instance,
in the network above we can do the following simplification:

P(GrassWet|Rain, Sprinklers, Cloudy) = P(GrassWet|Rain, Sprinklers)

When determining the probability of that it was cloudy yesterday conditional on observing wet grass, we
would have the following:

(GrassWet = 1|Cloudy)P(Cloudy)
P(GrassWet = 1)

P
P(Cloudy|GrassWet = 1) =

Predicting the value of Cloudy then reduces to finding

argmax P(Cloudy = y|X)
y

where X is a the set of observations (also known as features) that we have (i.e. everything we can see by
walking outside this morning). Equivalently, we can assign Cloudy the value

argmax P(X,Cloudy = y) = argmax P(X|Cloudy = y) - P(Cloudy = y)
y y

such that we maximize the joint probability of observations (X) and response (Cloudy) rather than the
conditional probability of response given observation.?

2 Simple Spam Filter

To construct a spam filter, you will be using the spam dataset from the kernlab package. This dataset
contains email messages classified as spam or ham. The 57 columns of the dataset mainly encode the

1Clearly Rain will depend on Cloudy. The other dependency is less obvious, so we will say that the sprinklers have
photosensors that tell them to go off only when it is not cloudy.

280 the model would specify P(Cloudy, Rain, Sprinklers, GrassWet) for any set of values assigned to the four random
variables.

3These two methods are “equivalent” in terms of their final prediction of .



number of times that certain words or characters occur in each message reported. There are 4601 rows
(emails) contained in the dataset, of which some fraction will be used for training your spam filter; the
remaining fraction will be used to test the performance of your filter after training. The first 48 columns
are continuous real variables representing the percentage of words (or numbers) per email that “match”
the name given to the column (so the $address column gives the frequency of the word address and the
$num415 column gives the frequency of the number 415).# The next 6 columns encode variables representing
the percentage of single characters in the email matching the name of the column (so the $charHash column
gives the frequency of the character #). The next 3 columns represent information about the average length
of uninterrupted sequences of capital letters, the length of the longest uninterrupted sequence of capital
letters, and the total number of capital letters in the email, respectively. The last column ($type) is a
binary factor denoting whether each email in question was considered spam or not (with labels nonspam and
spam).

For our spam filter, we will only use the first 48 columns as features for determining whether a message is
spam. Consider the following causal network:

conference

Figure 2: Spam Causal Network

This network models the type of message (spam or ham) as the parent of each of the 48 token frequency
variables from the data set (make, address, etc.). By modeling our data this way, we are saying value of
each of the 48 variables for a given message depends only on the type of the message.

Let X = {X3,Xs,..., X4s} be the set of observable features in an email which we can use to classify the
message (i.e. the token frequencies, which we can find by counting). Then, as shown previously, we classify
the message as
argmax P(X,type =y) = argmax P(X|type =y) - P(type =y)
Y Yy

To simplify the above expression, we will make the assumption of conditional independence between X and
48

type such that P(X|type) = HP(X¢|type).5

i=1
As an additional simplification, we will re-encode the spam data frame to make each of the 48 columns a
binary variable (factor) representing only whether or not the token exists in each message or not.% Then, to
classify a message, we can find P(X; = yes|type) for each X; by calculating the mean number of values in
column X; whose value is yes from the sub- data frame containing only rows of the specified type. And, as
we know, P(X; = no|type) is just 1 — P(X; = yes|type).

4You don’t need to worry about the naming scheme as long as you understand that these columns contain token frequencies.

5The naive Bayes assumption of conditional independence, as it is called, is not always valid. However, it is often a reasonable
approximation of the actual probability, and it greatly simplifies our calculations. Later in CS109 you’ll talk more extensively
about conditional independence and the naive Bayes assumption.

650 the value will be yes when the token frequency is > 0, and no otherwise.



2.1 Instructions

There is surprisingly little code that you need to write to complete the spam filter, and I've already written
some for you. Naturally, the first step will be to reformat the original spam data frame so that it only
contains the first 48 columns as well as the last. Once you’ve done this, you should factor each of the first
48 columns into binary variables with labels no and yes, as previously described.

Since we're going to use the spam dataset for both training and testing, we need to pick some fraction of
rows to use for the training, leaving the remaining rows for testing. Suppose for now that we use 1000 rows
for training. If the rows of the data frame were listed in a random order, we could just take the first 1000
rows for training and use the rest of the rows for testing. You’ll notice, however, that the first 1800 or so
rows of spam are all marked as type spam, so you will need to randomly pick a subset of the data frame to
use for training (so as to train our filter with both spam and ham messages). The sample(...) function
should be helpful when choosing a random subset of rows.

To help you with the tasks outlined above, I've given you the following starter code with decomposed
functions to complete:

RestructureSpamDataset <- function(spam) {
## Restures the ’spam’ data frame according to the specifications in the
## handout (and summarized below).
##
## Args:
##  spam - the ’spam’ data frame from the ’kernlab’ package
## Returns:
## A data frame with the first 48 columns of spam factored into
##  binary random variables (representing whether each word exists
## or not) as well as the last column of ’spam’.

}

ChooseTrainingAndTesting <- function(dataset, k) {
## Chooses a random subset of the dataset to use for training, leaving
## the rest for testing.
##
## Args:
## dataset - a data frame to split into training and testing data frames
## k - the number of rows to include in the training data set
## Returns:
## A list with elements $training and $testing, each a data frame with
## a disjoint subset of rows taken randomly from ’dataset’.

The remaining functions to complete are shown below, with explanation following.

GivenNonSpam <- function(training) {
## Computes conditional probabilities of the form P(Xi | type = "nonspam").
#i#
## Args:
##  training - data frame with training data.
## Returns:
#i# A matrix with 2 rows and 48 columns, one per observed variable



##  from the training data frame. The first row gives the conditional

##  probabilities P(Xi = "no" | type = "nonspam") for each of the 48

##  observed variables. The second row gives conditional probabilities

## P(Xi = "yes" | type = "nonspam"). Note that all columns should sum

##  to one.

## Details:

## This function uses Laplace smoothing for conditional probabilities.

##  You can implement Laplace smoothing by imagining, for each of

##  the 48 columns, that we see two additional datapoints ("no" and "yes").

## Choose the subset of the data frame which contains only "nonspam"
## rows, and keep only the first 48 columns.
subset <- ## TODO

## Compute, for each of the 48 columns in the subset above, the probability
## of the value being "no". Remember to use Laplace smoothing.
pNo <- ## TODO

return(rbind(no = pNo, yes = 1 - pNo))
}

GivenSpam <- function(training) {
## Computes conditional probabilities of the form P(Xi | type = "spam").
## Details the same as above.

## Choose the subset of the data frame which contains only "nonspam"
## rows, and keep only the first 48 columns.
subset <- ## TODO

## Compute, for each of the 48 columns in the subset above, the probability
## of the value being "no". Remember to use Laplace smoothing.
pNo <- ## TODO

return(rbind(no = pNo, yes = 1 - pNo))
}

Predict <- function(row, p.nonspam, p.spam, nonspam.probs, spam.probs) {
## Predicts whether the row (with 48 observed variables) is "spam" or
## "nonspam" by choosing argmax P(row | type) * P(type).

##

## Args:

## row - vector with 48 values (one per observed variable)
##  p.nonspam - P(type = "nonspam")

## p.spam - P(type = "spam")

## nonspam.probs - conditional probabilities of the form P(Xi | type = "nonspam")
##  spam.probs - conditional probabilities of the form P(Xi | type = "spam")

## Returns:

#i# "spam" or "nonspam"

The first two functions listed above compute (using the subset of rows selected for training) conditional prob-



abilities of the form P(X;|type). In the case of GivenSpam(), we are computing the conditional probabilities
P(X; = noltype = spam) and P(X; = yes|type = spam), which can be found by looking at the subset of
rows from the training data of type spam and seeing what fraction have the value no and yes, respectively.
When computing these fractions, you should imagine that there are two additional data points per column
(one no and one yes) such that non-zero probability is assigned to every conditional observation.”

The final function to complete is Predict (), which given a set of observations (represented as a factor with
48 values) predicts the type of message as

48
argmax P(X,type =y) = argmax P(X|type = y)-P(type = y) = arg max H P(X;|type = y)-P(type = y)
Yy Yy v i=1

For your computer, finding a product of many small values (i.e. probabilities) is problematic, and you're
likely to find after multiplying all the terms above together that the product is 0 for any value of y. To solve
this problem, it is common practice to exploit the monotonicity of the log function and find the log of the
product above.® So our prediction is

48 48
arg max log H P(X;|type = y) - P(type = y) = argmax Z log P(X;|type = y) + log P(type = y)
Y i=1 Y i=1

To complete the Predict () function, use log probabilities and compute the sum above for y = spam and
y = nonpam, returning the value y which gives the larger sum.

Finally, use the function RunTrainingAndTesting() (which I've provided) to see your spam filter in action.
When does including additional rows in training cease to increase the performance of your filter? You may
be surprised to find how few rows are actually required in training to get reasonably good performance.

Now pat yourself on the back. Writing a spam filter is no easy feat!

7This method is known as Laplace smoothing, and is a way of making provisions for rare events that are never seen in
training data (like seeing the word Viagra in a non-spam message). Many probabilistic models “break” when you assign zero
probability to rare events, so we use smoothing to reshape probability density. In our example, although we are unlikely to see
Viagra in a non-spam message during training, it is not an impossible event. Smoothing assigns this event a small probability.

8For now, you can take it on faith that this mathematically will not change the prediction for y. You’ll see a proof of this
later in the quarter.



